
GNN-based Advanced Feature Integration for ICS Anomaly Detection

SHUAIYI L(Y)U, Harbin Institute of Technology, China

KAI WANG∗, Harbin Institute of Technology, Weihai, China

YULIANG WEI, Harbin Institute of Technology, Weihai, China

HONGRI LIU, Harbin Institute of Technology, Weihai, China

QILIN FAN, Chongqing University, China
BAILING WANG∗, Harbin Institute of Technology, China

Recent adversaries targeting the Industrial Control Systems (ICSs) have started exploiting their sophisticated inherent

contextual semantics such as the data associativity among heterogeneous ield devices. In light of the subtlety rendered

in these semantics, anomalies triggered by such interactions tend to be extremely covert, hence giving rise to extensive

challenges in their detection. Driven by the critical demands of securing ICS processes, a Graph-Neural-Network (GNN) based

method is presented to tackle these subtle hostilities by leveraging an ICS’s advanced contextual features reined from a

universal perspective, rather than exclusively following GNN’s conventional local aggregation paradigm. Speciically, we

design and implement the Graph Sample-and-Integrate Network (GSIN), a general chained framework performing node-level

anomaly detection via advanced feature integration, which combines a node’s local awareness with the graph’s prominent

global properties extracted via process-oriented pooling. The proposed GSIN is evaluated on multiple well-known datasets

with diferent kinds of integration conigurations, and results demonstrate its superiority consistently on not only anomaly

detection performance (e.g., F1 score and AUPRC) but also runtime eiciency over recent representative baselines.

CCS Concepts: · Security and privacy→ Intrusion detection systems; Formal methods and theory of security; ·

Networks→ Network architectures; · Computing methodologies→ Neural networks; Classiication and regression trees.

Additional Key Words and Phrases: Advanced Feature Pooling, Embedding Integration, Graph Neural Networks, Anomaly

Detection, Industrial Control Systems

1 INTRODUCTION

The Industrial Control Systems (ICSs) have aroused signiicant global security concerns over the last decade [4],
[5], [3]. As demands in real-time industrial process control has been growing by the second, the idea of securing
the ICSs via physical segregation in real-world applications has been gradually replaced by remote accessibility
enabled via Internet connection. Such measures, in spite of facilitating management in a rather positive manner,
undesirably expose the ICSs to the diversiied malicious interactions over the Internet, a fair amount of which
are speciically crafted to compromise the proper functioning of the underlying industrial worklow, causing
considerable economic loss or casualty. Thus, in order to timely counter the adversaries targeting the core running

∗Corresponding Author

Authors’ addresses: Shuaiyi L(y)u, Harbin Institute of Technology, China, lvshuaiyi2568068@163.com; Kai Wang, Harbin Institute of

Technology, Weihai, China, dr.wangkai@hit.edu.cn; Yuliang Wei, Harbin Institute of Technology, Weihai, China, wei.yl@hit.edu.cn; Hongri

Liu, Harbin Institute of Technology, Weihai, China, liuhr@hit.edu.cn; Qilin Fan, Chongqing University, China, fanqilin@cqu.edu.cn; Bailing

Wang, Harbin Institute of Technology, China, wbl@hit.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2157-6904/2023/9-ART $15.00

https://doi.org/10.1145/3620676

ACM Trans. Intell. Syst. Technol.

https://doi.org/10.1145/3620676
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620676&domain=pdf&date_stamp=2023-09-05

2 • L(y)u et al.

Fig. 1. Numeric streams with respect to process-related field devices

processes, it is imminent to thoroughly investigate the characteristics of the data streams with respect to the
process-related ield devices, such as sensors and actuators, as well as stipulating a comprehensive scheme to
detect the anomalous variational patterns in these streams. Such streams include but are not limited to the
following categories: series of physical states measured by the sensors, operational modes of the actuators, etc.
(See Fig. 1).

Over the past decades, extensive eforts have been made to secure the ICS processes starting with the traditional
approaches aiming at detecting dubious patterns within single ield devices or connections [36], [25], [15].
These methods, although easy to deploy, are not capable of coping with recent hostilities that exploit the
complex contextual properties among multiple devices, due to the lack of consideration of the ICSs’ sophisticated
correlational semantics. Therefore, they sufer from serious accuracy issues such as an unacceptably high false
alarm rate. To tackle these issues, advanced deep learning based anomaly detection frameworks have emerged
at a tremendously rapid rate, including but are not limited to the Convolutional Neural Network (CNN) [1],
and Long-Short Term Memory (LSTM) [10] [28], etc. Designed to capture the spatial and temporal correlations
within a node’s features, these models yield superior detection accuracy as compared to traditional approaches.
Nevertheless, as they usually manipilate data points in a way without suiciently considering their contextual
associativity in speciic network architectures, their functionality still has potential for improvement.
Recently, the Graph Neural Networks (GNNs) have become a considerably popular trend in the domain of

anomaly detection, owing to their powerful ability to capture the contextual semantics in randomly-structured
network topologies. These semantics incorporate a diversiied range of graph-related features, such as the
roles of nodes or edges in the graph, the correlation of nodes and edges, etc. State-of-the-art GNN variations
include at least the Graph Convolutional Network (GCN) [21], the Graph Attention Network (GAT) [33], and
the Graph Sample-and-Aggregate (Graph-SAGE) [17], etc. These methods conduct local feature aggregation via
neighbourhood message passing. Despite being eicient, such a mechanism imposes an attentional bias to a
node’s immediate surroundings in its contextual awareness. In view of an ICS’s heterogeneous nature and its
layered structure entailing complex structural semantics that a simple adjacent message aggregation scheme may
fail to capture, such a bias is undesirable and potentially deteriorates the model’s detection accuracy.
In order to conquer the challenges in accurately extracting complex structural semantics, more advanced

methods have been introduced including the Meta-GNN [34], the Graph Deviation Network (GDN) [19], the E-
GSAGE [23], etc. Although efective in particular domains, their applicability is strictly limited to the speciic type
of contextual properties they are designed to discern. As the pool of correlational features in an ICS network is

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 3

immense, these approaches rarely make a comprehensive solution that incorporates the majority of the network’s
core representative features. In an attempt to incorporate the most prominent semantics in anomaly detection
tasks, one of our previous works, the Global-Local Integration Network (GLIN) [24] performs feature integration
via global pooling. While proved efective, its computation is costly as the scale of the graph increases.

Therefore, in order to address the aforementioned issues, we design and implement a GNN-based anomaly
detection scheme named the Graph Sample-and-Integrate Network (GSIN), which deals with node-level state
inference tasks by leveraging the graph’s prominent properties extracted via partial pooling. The proposed
approach is diferentiable from existing solutions in that it performs pooling from a subset of a graph’s vertices,
and that the extracted features make a more appropriate and advanced representation of the graph’s contextual
proile. In this fashion, not only is the model’s anomaly detection performance preserved, but also its runtime
eiciency is simultaneously enhanced as the quantity of nodes for pooling and integration is reduced. Speciically,
the GSIN comprises: (a) A preprocessor that performs temporal feature encapsulation. It transforms the original
data low into a set of vector expressions to be fed into the subsequent module, each of which representing a
speciic node’s temporal features at a particular time tick of interest. (b) An encoder that creates node embeddings
via message passing using the initial vector representations output by the preprocessor, enriching each node
with its local awareness. (c) An integrator extracting the graph’s universal properties via vector pooling and
embedding fusing. As the core building block of the GSIN, the integrator performs semantic extraction and
integration using only a subset of the graph’s vertices deined via process-oriented pooling, further fertilizing
every node with advanced contextual knowledge. (d) A decoder conducting state inference using the nodes’
integrated knowledge. It produces labels representing the states of the devices of interest at any applicable time
tick.

The key contributions of our work can be summarized as follows:

1) We design and develop the GSIN, which performs node-level anomaly detection in ICSs. Apart from the
GNN’s local aggregation routine, we explore the opportunities of meliorating the model’s functionality via
advanced contextual feature integration, which is a double-stage process consisting of feature pooling and
embedding fusing. Diferent integration schemes are designed, evaluated and compared using multiple
metrics.

2) We evaluate the GSIN over 5 popular open-source datasets (SWaT, WADI, BATADAL, CISS, and CHD), and
the model’s functionality is comprehensively assessed in terms of multiple metrics.

3) We compare the GSIN’s performance against numerous representative baselines. Results demonstrate the
GSIN’s superiority in terms of both the detection accuracy and its runtime eiciency.

The rest of the paper is organized as follows. Section 2 overviews the literature relevant to ICS anomaly
detection; Section 3 deines the problem to be addressed; In Section 4, we provide a detailed description of the
GSIN’s architecture; Section 5 summarizes the evaluation results and highlights relevant analysis; Section 6
concludes the paper.

2 RELATED WORK

In this section, we overview the literature related to ICS anomaly detection. Our discussion is categorized into
Traditional approaches, Classical Machine Learning and Deep Learning methods, and Graph Neural Network
methods.

1) Traditional methods:

Early eforts in the literature [4] mostly focus on sequential feature mining on data streams with respect to
individual devices. Particularly, considering the procedural consistency in typical industrial processes, the idea of
detecting anomalies via periodic semantic mining is prevailing, based on which, numerous methods have been
proposed. For example, the DFA-based methods [25] [15] convert the devices’ numeric sequences into loops of

ACM Trans. Intell. Syst. Technol.

4 • L(y)u et al.

states and attempt to detect any behaviours that deviate from the loop. A semantic, network-based intrusion
detection system [16] is developed that continuously keeps track of process variables to derive variable-speciic
prediction models as a basis for the inference of future activities. Shortly thereafter, a sequence-aware intrusion
detection reference architecture (S-IDS) [6] is presented to detect sequence attacks, a type of semantic attacks
that aims at mingling chaotic sequence of events with normal streams. More recently, a software-deined security
(SDSec) approach [35] is proposed to prevent the propagation of attack impact among ield zones in the ICSs.

Light-weight and simple as they are, the apparent supericiality of features these traditional methods are built
on have proved them unsuitable for detecting adversaries exploiting the graph’s advanced contextual semantics.

2) Classical Machine & Deep Learning Methods:

The demands for improvement in detection accuracy percipitates in-depth feature exploration using machine
and deep learning based methodologies. Hybrid intrusion detection systems [1][10][28] are introduced encapsu-
lating the Convolutional Neural Network and Long-short Term Memory Network. Being able to capture both
the spatial and temporal characteristics of an entity’s features, the hybrid models are demonstrated feasible
on the detection of more advanced attacks (such as the zero-day attacks). In addition, auto-encoder methods
[18] [13] are designed to detect anomalous data points via sample reconstruction. A GAN-based approach [7] is
developed to perform outlier detection using dual auto-encoders. Apart from the aforementioned methods, a
kMeans based OCSVM model [2] is proposed for anomaly classiication. Various frameworks utilizing Isolation
Forest techniques [30] [32] [20] are created to recognize anomalous patterns in network traics. An automated
fault detection method [11] based on the Twin Support Vector Machine (TWSVM) is proposed to enhance the
reliability of data-driven condition monitoring in wind turbine operations.

Apparently, by considering high-level features, the aforementioned methods yields superior results in detection
accuracy. Nonetheless, without exploring the topological features of the speciied industrial processes, the
performance of these methods still leaves a lot to be desired.

3) Graph Neural Network Methods:

Embedding learning makes up the core functionality of the Graph Neural Networks. Over the past few
years, dozens of message passing schemes have been introduced for embedding learning. Graph Attention
Network (GAT) [33] assigns trainable weights to a node’s neighbourhood to meliorate the model’s classiication
performance. Graph Sample and Aggregate (Graph-SAGE) [17] employs sampling over a node’s neighbourhood
to enhance the model’s operational eiciency. In addition, to leverage high-level contextual properties, more
advanced approaches have been proposed [19] [34]. The Graph Deviation Network (GDN) [8] is introduced
to explore the correlational properties among sensors in high-dimensional time series data and create GAT-
based anomaly detectors using the learnt correlations. Apart from the aforementioned message aggregation
schemes on the basis of individual nodes, Meta-GNN [26] is introduced exclusively for the analysis of attributed
heterogeneous information network. The model is developed to extract features from meta-graph structured
neighbourhood so as to capture higher-order semantic relationships in the network. In order to cover the most
prominent semantics in ICSs, the Global-Local Integration Network (GLIN) [21] enriches a node’s awareness
with advanced contextual knowledge extracted via global pooling. To adapt the GNN-based anomaly detectors to
speciic industrial processes, the Attributed Heterogeneous Graph Analyzer (AHGA) [27] generates the graph for
downstream anomalous pattern recognition using the nodes’ process-oriented properties.

Although the solutions above have been demonstrated efective in many applications, they sufer from limita-
tions ranging from the lack of semantic comprehensiveness to insuiciency in runtime conservation. Therefore,
as diferentiated from previous methods, to tackle the semantic issues, our proposed solution attempts to extract a
network’s contextual properties from a universal perspective, rather than discriminate against features of speciic
categories. Moreover, instead of adopting global pooling in existing approaches, the presented framework deines
schemes to narrow the pooling range, which presumably makes the process less time-consuming. In summary,

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 5

Fig. 2. Star-Shaped Topology (�� refers to the �-th controller in the system, ��− � and ��− � are the �-th actuator and sensor

linked to �� , respectively)

our work extends the semantic integration idea of encoding a graph’s advanced contextual features to ameliorate
both the model’s anomaly detection accuracy and its runtime eiciency.

3 PROBLEM STATEMENT

As our primary task, constructing a GNN-based model to achieve device-level anomaly detection demands prior
investigation in the devices’ mutual connectivity, based on which the model’s graph input� (� , �) is deined. �
and � corresponding to � ’s vertices (nodes) and edges, building � intuitively breaks down to deining sets � and
�.

• Deining � :
Given a heterogeneous ICS network entailing devices of all functions, determining � is inextricably
associated with the intended main focus of the model, which in our case, refers to detecting anomalous
operational states of all process-related ield devices. Therefore, every ield device is assigned to � as its
member. In addition, to preserve the core topological context of the original ICS networks, all controllers
are abstracted into nodes in � as well to channel the ield devices. Finally, as the rest of the network is
of marginal relevance to our main focus, it is condensed into a single node named the Central Reference
Point (CRP), which is also added to � .

• Deining �:
In order to regulate the edge set �, we exclusively consider the physical connectivity among � ’s elements
in the respective ICS network. One way of constructing � is described as follows: With the CRP as the
starting point, all controller nodes are directly attached to it, and each controller is connected to the ield
devices (sensors and actuators) under its supervision. The resulting star-shaped topology is illustrated in
Fig. 2. Note that this is not the only plausible way to device the graph for model development. Another
scheme may simply omit the CRP and model the graph using only the nodes we are tasked to analyze. See
Section 5.1.2 for details.

Graph � (� , �) deined, our core problem is stated as follows (See Deinition 1):
Deinition 1. Given the graph � (� , �) and the labeled temporal data sequences (� (�), � (�)) with respect to all
nodes in � , create model� (�,� (�)) such that for all �, � (�, � (�)) = � (�).

ACM Trans. Intell. Syst. Technol.

6 • L(y)u et al.

We conceive our task as a binary classiication problem which aims at mapping the original numeric sequences
� (�) captured from graph� ’s node elements to their respective ground-truth operational states � (�). Speciically,
� (�) refers to an encapsulation of all the process-relevant numeric streams with respect to the devices in �

(e.g., the numeric values of physical states measured by sensors, or the operational mode of the actuators, etc.,
see Fig. 1), and � (�) is a sequence of binary states (0 for normal and 1 otherwise) that relects the devices’ real
operational conditions with respect to � (�).
As a potential solution, the GSIN framework proposed in this article is intended to conduct state inference

on a ine-grained device-level, and its functionality generalizes over any applicable time tick of interest. As
distinguished from current state-of-the-art methods, the GSIN features the following two aspects: 1) multi-view
decoding and 2) integration via sampling.

1) Multi-view decoding:

The multi-view idea is a paradigm that enables observation of an entity over more than one speciied vision. By
mining via split channels, the model is intuitively capable of reining information that contains more in-depth and
subtle features, and therefore yielding a more universal cognition of the entity, exerting positive inluences on the
model’s functionality. Typical multi-view applications usually separate the original data into disparate channels,
each of which is processed with an independent encoding framework. Such approaches usually sufer from a
horrendously unfavourable runtime consumption due to an increasing quantity of GNN blocks to be trained. To
avert this issue, the GSIN adopts the multi-view concept in its decoding module. It extracts the essences of the
information processed by a single encoder via multi-view pooling, groups the essences into distinct channels,
treats every channel as an individual view, and performs state inference via view integration (See Fig. 3).

(a) Typical multi-view application (b) GSIN multi-view decoding application

Fig. 3. Stage-wise F1 Performance

2) View creation via sampling:

In GSIN, views are generated with the core features pooled from nodes in the node set � . To determine which
nodes are to be used for pooling, random sampling is applied to draw a subset of nodes from � instead of using
the entire � . Relevant insights are provided as below: As neighbourhood aggregation is usually employed in

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 7

Fig. 4. GSIN Architecture

typical GNN frameworks, the learnt embeddings of adjacent nodes tend to overlap in terms of the contextual
information contained. Consequently, pooling from all graph nodes in � may cause a redundancy of certain
topological semantics in the resulting pooled messages, negatively impacting the distribution of other core
features and afecting the performance of the model that utilizes these features in subsequent inference processes.
By introducing sampling, the GSIN is able to moderately remove such redundancy by sparsifying the nodes,
which reduces the similarity of the nodes in close proximity. In this fashion, more essential features are preserved
in the node embeddings and used by the model to yield more reliable inference results.

4 MODEL DESIGN

In view of current demands for advanced knowledge integration, we design the GSIN, a chained architecture
comprising four components, namely a preprocessor, an encoder, an integrator, and a decoder, as shown in Fig. 4.
The preprocessor is a temporal condenser that converts the raw data low into a matrix comprising the initial
features to be fed into the encoder, in which these features are updated with local semantics. It is designed to be
lexibly conigured, and capable of dealing with sequences of all sorts, regardless of the types of information
conveyed. The encoder is implemented as a 2-layer GCN block as it is structurally simple and time-conserving.
After the encoding step, each node’s semantic awareness is further enhanced via incorporation of the graph’s
high-level contextual characteristics extracted by the integrator, which, as the core building block of the GSIN,
performs semantic extraction and integration using only a subset of the graph’s vertices deined via process-
oriented pooling, rather than the entire topology as in previous methods. Such a measure greatly increases the
quality of the node embeddings used for state inference, and thus improves the model’s detection performance.
Finally, using the representations the integrator produces, the decoder makes inference decisions denoting states
of the related devices. The decoding scheme is designed compact and scalable across diferent number of state
types, and is thus favourable to scenarios in which diferentiation of multiple anomalous categories is necessary.
In this paper, however, only two states are applicable, namely “0” for normal and “1” for abnormal. In general,
temporal sequences, while cascading through these building blocks, are converted into state lows denoting
device condition at any given timestamp.

ACM Trans. Intell. Syst. Technol.

8 • L(y)u et al.

Fig. 5. Sequence-to-Vector Transformation for a Single Node at a Particular Timestamp ����� (Input:�� ; Output: �
(0)
�×�0

)

4.1 Preprocessor

To transform the original data into legible input to the GSIN, we develop a preprocessing module that converts
the temporal sequences � of shape (�,�) into independent vectors � (0) of shape (�, �0,�

′) where � ,�0,� are the
device quantity, the dimension of each vector, and the number of original timestamps, respectively. � ′ is the
number of remaining time ticks at the output, whose value depends on the speciic data manipulation mechanism.
These vectors, derived for all devices, entail sequential characteristics in the current and historical readings at
all applicable time ticks. Assuming the impact of historical readings on the current state diminishes with time,
we assign exponentially-decaying weights to each reading value before condensing the original data low via
aggregation. To exemplify this, suppose � in � is the original reading sequence of length� captured on a speciic
device. The transformation process of � is illustrated in Fig. 5.

At the beginning of the process, a window is applied to the original sequence that truncates a series of historical
reading snippets ending at the current timestamp of interest. Suppose the window is of size � and moves along
the original stream with a step of 1, the numeric relation of � and � ′ is shown in (1).

� ′ = � − � + 1 (1)

In this case, the number of time ticks � ′ the GSIN is able to process depends on both the length of the original
stream � and the designated window size �. In this paper, the value of � is empirically set in accordance with the
periodic value that applies to most data streams in a given dataset (e.g. 4300 for SWaT). For the datasets in which
cyclicity is vague in the majority of the data sequences, however, a value of 100 is assigned (e.g. BATADAL).
After the window is conigured, temporal aggregation is carried out to ilter out the noises in the streams

that may negatively impact the GSIN in capturing and utilizing the variational properties in the original data
sequences. Speciically, a grouped averaging scheme is adopted for aggregation in which weights are computed
following the scheme in (2) and assigned to the elements in the window to create an aggregated vector.

�� =
�−

�
� �

�−1∑
�=0

�−
�
� �

, � = 0, 2, ..., � − 1 (2)

In (2), � is the window size and�� denotes the weight value assigned to the reading � units before the current time
tick. � is the coeicient (set to 4 in this paper) that balances the distribution of all weights in the window. Suppose

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 9

Fig. 6. Encoder Configuration (Input: �
(0)
�×�0

; Output: ��×�)

�0 = (�
(0)
0 , �

(1)
0 , �

(2)
0 , ..., �

(�−1)
0) and ����� = (�

(0)
���� , �

(1)
���� , �

(2)
���� , ..., �

(�−1)
����) refer to the original window snippet and

the aggregated vector, respectively. The aggregation process can be shown as follows (See (3)).

�
(�)
���� =

(��) (�+1)−1︁

�=(��)�

�
(�)
0 � � , � = 0, 1, ...,� − 1 (3)

In (3), the aggregation is completed via grouped averaging and� is the size of the resulting aggregated vector.
The value of� indicates the extent to which the original data snippet is condensed. It is desirable that it is not
too high or too low in order to preserve a moderate amount of original information after temporal compression.
In this paper, we have� =

1
100� for large windows (size of 1000 or larger) and� =

1
10� for relatively smaller ones

(size of within 1000).
The aggregated vector ����� is subsequently fed into a PCA block, which turns it into a �0-dimensional row

vector ℎ (0) . Then the ℎ (0) of all � devices are stacked together, generating � (0) of size � × �0. Note that this �
(0)

is exclusive to a single time tick. However, since the number of timestamps only matters in the batching of the

dataset, it is omitted in the discussion of the model’s structure for the rest of the Section. Hence, �
(0)
�×�0

is treated

as the input of subsequent modules.

4.2 Encoder

The encoder converts via message passing the vectors�
(0)
�×�0

generated by the preprocessing module to convoluted

embeddings ��×�0 rich in local semantics, enabling the new representations to serve as a relection of the nodes’
local awareness, prompting the embeddings to become more informative regarding how the nodes exist in the
universal context, which facilitates potential increase in the model’s inference (decoding) accuracy. Utilizing the
star-shaped topology in Fig. 1, vectors obtained at each speciic time tick are grouped into one graph unit for
message passing, and multiple graph units may constitute a larger topological version for the purpose of mini-
batch training. Our encoder comprises 2 message passing layers whose hyperparameter settings are illustrated in
Fig. 6. For simplicity, it employs GCN as its message passing scheme, adopts ReLU as the nonlinear activation

operator, and outputs node embeddings of 128 dimensions. Given the trainable weight matrices�
(1)
�0×�1

and�
(2)
�1×�

,

the adjacency matrix ��×� and its degree matrix � , the message passing procedure is represented in (4), (5) and

ACM Trans. Intell. Syst. Technol.

10 • L(y)u et al.

Fig. 7. Integrator Configuration (Input: ��×� ; Output: �̂
�×�̂

; Note: �
(�)
� is the pooled vector produced from �

(�)
�)

(6)

�
(1)
�×�1
← Re�� (�̃�×��

(0)
�×�0

�
(1)
�0×�1
) (4)

��×� ← Re�� (�̃�×��
(1)
�×�1

�
(2)
�1×�
) (5)

�̃�×� ← �−0.5��×��
−0.5 (6)

4.3 Integrator

As opposed to regular GNN paradigm, the GSIN conducts additional embedding integration via vector pooling

and embedding fusion (See Fig. 7), transforming ��×� into �̂
�×�̂

before preceding to label prediction. This
operation diferentiates the GSIN from current approaches in that each node’s awareness of its surroundings
is reinforced with prominent universal properties, while in regular GNN methods, nodes solely broaden their
horizon via adjacency aggregation. However, instead of directly considering every node in the production of
the global expression that encapsulates these universal properties, the GSIN’s focus is to minimize the node
sets preserving the graph’s most signiicant global semantics, while balancing the model’s detection accuracy
and runtime eiciency. Particularly, given a graph � (� , �), the Integrator deines the following: the pooling

sets Ω
�

=

{
�
(�)
� |∀� ≤ �,�

(�)
� ⊆ �

}
, the fusing sets Ω

�
= {�

(�)

�
|∀� ≤ �,�

(�)

�
⊆ � , ���

⋃
�
�
(�)

�
= � , ���∀� ≠

�, �
(�)

�
∩�

(�)

�
= ∅}, and the mapping relation Ψ : Ω� → Ω

� . Each set �
(�)
� in Ω

� performs pooling independently

and generates a single embedding to be fused with all nodes in some fusing set �
(�)

�
in Ω

� . Note that� and �

refer to the size of Ω� and Ω
� . Two most frequently used pooling methods are max and mean pooling. For an

element set �
(�)
� in Ω

� with �1 nodes, let ℎ
(�)

�
be the embedding vector in ��×� with respect to the �-th node in

�
(�)
� . Thus we have

�
(�)
� = sup{ℎ

(�)

�
, � ∈ [1, �1] ∩ � }

= [���{ℎ
(�)

�
[0]}, ���{ℎ

(�)

�
[1]}, ..., ���{ℎ

(�)

�
[� − 1]}]

(7)

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 11

Fig. 8. Stage-wise Integration Setings

for max pooling and

�
(�)
� =

1

�1

�1︁

�=1

ℎ
(�)

�

=
1

�1
[

�1︁

�=1

ℎ
(�)

�
[0],

�1︁

�=1

ℎ
(�)

�
[1], ...,

�1︁

�=1

ℎ
(�)

�
[� − 1]]

(8)

for mean pooling where � is the number of columns in � , denoting the dimension of a node embedding. To fuse
the pooled embeddings to nodes in Ω

� , weighted averaging and concatenation are most commonly adopted.

Suppose the Ψ : Ω� → Ω
� mapping of �

(�)
� yields �

(�)

�
, i.e.,

Ψ(�
(�)
�) = �

(�)

�
(9)

given �
(�)
� the pooled embedding obtained from �

(�)
� , and that �

(�)

�
has �2 nodes in it, let ℎ

(�)

�
be the embedding

vector in ��×� with respect to the �-th node in �
(�)

�
. Thus, we have for concatenation,

ℎ̂
(�)

�
= ℎ
(�)

�
| |�
(�)
� (10)

where ℎ̂
(�)

�
is the counterpart of ℎ

(�)

�
in �̂

�×�̂
, and the symbol | | stands for direct appending of �

(�)
� to the end of

�
(�)

�
. For weighted averaging, the following holds,

ℎ̂
(�)

�
= �ℎ

(�)

�
+ ��

(�)
� (11)

Note that the coeicients � and � can be trained as regular parameters or tuned as hyperparameters. Provided
the principles discussed above, it is clear that our goal is to specify the Ω� , Ω� and Ψ : Ω� → Ω

� , as well as the
pooling and fusing mechanisms. To streamline the process, max pooling and concatenation are employed, and 2
general schemes are designed to determine Ω� , Ω� and Ψ : Ω� → Ω

� , from the perspectives of stage and layer
distributions. Deinitions concerning a stage and a layer are provided as below.
Deinition 2. A stage in a star-shaped topology is deined as a set of nodes incorporating one controller and all
nodes directly attached to it, CRP included. Fig. 8 illustrates how nodes are assigned to their respective stages.

ACM Trans. Intell. Syst. Technol.

12 • L(y)u et al.

Fig. 9. Layer-wise Integration Setings

Deinition 3. A layer in a star-shaped topology is referred to as the set of all nodes whose distances to the CRP
are identical (See Fig. 9). As shown in Fig. 2, all controllers are one link away from the CRP, thus, they are in the
same layer. Diferent layers are diferentiated via their distance discrepancies.

4.3.1 Stage-wise Integration. To achieve stage-wise integration, all nodes are classiied into stages (See Fig. 8),

and each stage is a fusing set in Ω
� . In this case, �

(�)

�
= {�1, �2, ..., �� (�)

�

} is the set of all devices in stage � (�
(�)

�

is the quantity of devices in stage �). To determine Ω� , we deine the term pooling range �� as the number of

consecutive stages that form each �
(�)
� , and therefore

�
(�)
� =

⋃
∀�,� ∈ {�

(�)

�
|� ∈

�+(�� −2)⋃

�=�−1

� mod � + 1} (12)

and

Ω
�
= {�

(�)
� |� ∈ [1, �] ∩ � } (13)

Note that in this manner,� = �, and thus, Ψ : Ω� → Ω
� can be intuitively made a bijection, in which each �

(�)
�

in Ω
� is associated with one �

(�)

�
in Ω

� , and vice versa. Speciically, the following mapping is evaluated in our

experiments,

Ψ(�
(�)
�) = �

((�+⌊ ��2 ⌋−1) mod �+1)

�
(14)

or its inverse

Ψ
−1 (�

(�)

�
) = �

((�−⌊ ��2 ⌋+�−1) mod �+1)
� (15)

This mapping scheme is instantiated in Fig. 8, with � = 4 and �� = 5, giving � = 2. Thus, �
(�)
� is the green area

starting from Stage 2 covering 5 consecutive stages, and �
(�)

�
is represented by the blue area, which is Stage 4.

The general stage-wise integration process is described in Algorithm 1.
Algorithm 1 sequentially amalgamates the following steps:

1) Deining fusing sets Ω� (line 2-5): In stage-wise integration, each fusing set � � is equivalent to the set
of all nodes associated with a particular stage in the speciied industrial process. Therefore, its members
range from the controller node � assigned to this stage as well as all the ield devices in its supervision
(denoted as �′� �ℎ������). All � � sets are stored in the fusing set array Ω

� .

2) Deining pooling sets Ω
� (line 6-9): Given the pooling range �� and the fusing sets Ω

� previously
deined, the algorithm maps each � � to its respective pooling set �� via the inverse of mapping relation

Ψ : Ω� → Ω
� , which is deined in equation (15). Similarly, all �� sets are stored in the pooling set array

Ω
� .

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 13

Algorithm 1. Stage-wise Integration

Input: Learnt embeddings produced by the encoder � , pooling range ��

Output: Integrated embeddings �̂

Ensure:

1: Fusing sets Ω�
✘empty set; Ω�

✘empty set; �̂✘empty list

2: for c in set of controllers: #Deining Ω
�

3: � � =
⋃
�, �′� �ℎ������

4: Ω
�
✘Ω

�+� �

5: end for

6: for � � in Ω
� : #Deining Ω

�

7: ��✘Ψ
−1 (� �)

8: Ω
�
✘Ω

�+��

9: end for

10:for � � in Ω
� : #Pooling and Fusing

11: ��✘Ψ
−1 (� �)

12: Extract the set of embeddings �� from � with respect to nodes in �� .

13: ��✘maxpooling(��)

14: for � in � � : #Traversing all nodes in the current � �

15: �̂✘�̂+concat(� ,��)

16: end for

17:end for

18:return �̂

3) Pooling and fusing (line 10-17): For each fusing set � � , the model initially inds its corresponding
pooling set �� , and locates the embeddings �� produced by the encoder with respect to the nodes in �� .
Then the algorithm performs max pooling over �� and produces an embedding �� as a relection of the
graph’s representative properties. Finally, embedding �� is fused to all vector representations for nodes
in the fusing set � � via concatenation. The algorithm outputs the concatenated vectors for subsequent
decoding.

4.3.2 Layer-wise Integration. To conduct layer-wise integration, on the other hand, every node is assigned to a
layer � (�) ∈ Θ with Θ the set of all �� layers in the topology (e.g. The architecture in Fig. 2 can be separated into 3
layers, the CRP, controlling and ield layer, as shown in Fig. 9). Each �� is produced via sampling, and assuming
that nodes in diferent layers exhibit distinctive inluential patterns on the model’s decoding functionality,
sampling across multiple layers is strictly constrained. Equivalent statement holds as thus: ∀�� ∈ Ω

� ,∀� ≠ �, �, � ∈

[1, ��] ∩�,�� ∩�
(�)

= ∅ �� �� ∩�
(�)

= ∅. Also, for simplicity, the coniguration of the fusing sets is streamlined as

Ω
�
= {� }, allowing the efect of layer-wise fusing to span across the entire topology. Moreover, to investigate the

inluence of diferent layers on the model’s performance, only one �� is created at a time and Ω
�
= {�� } contains

only one element as a result. Algorithm 2 elaborates on the worklow of layer-wise integration procedure.

ACM Trans. Intell. Syst. Technol.

14 • L(y)u et al.

Algorithm 2. Layer-wise Integration

Input: Learnt embeddings produced by the encoder �

Output: Integrated embeddings �̂

Ensure:

1: Layer list Θ✘empty list; �̂✘empty list

2: Breadth-First Search on the speciied layered topology (e.g. the structure in Fig. 2),

and store each node into its layer � (�) , � ∈ [1, ��] ∩ � .

3: for � in [1, ��] ∩ � :

4: Θ← Θ + � (�)

5: end for

6: Given layer � ∈ Θ of interest, set � ∈ [1, �����ℎ(�)] ∩ � .

7: �� ← ��������(�, �)

8: Extract the set of embeddings �� from � with respect to nodes in �� .

9: ��✘maxpooling(��)

10:for � in � � :

11: �̂✘�̂+concat(� ,��)

12:end for

13:return �̂

The main steps of Algorithm 2 can be described as below:

1) Deining layers (line 2-5): Given a hierarchical structure (e.g. Fig. 2), the algorithm dissects it into ��
distinct layers via Breadth-First Search, each of which contains devices of a unique category (e.g. controllers,
ield devices, etc.). All layers are stored in the layer array Θ.

2) Sampling (line 6-7): After all layers are deined, the GSIN selects the layer � from Θ to conduct sampling
on, conigures the number of devices � to perform pooling from, and inally, deines the pooling set �� as a
subset of � nodes randomly selected from layer � .

3) Pooling and fusing (line 8-12): In layer-wise integration, the fusing set � � is conigured as the entire set
of nodes in the speciied graph. That said, the pooling and fusing processes are stated as follows: For the
pooling set �� generated previously, the algorithm extracts the vector representations �� with respect to
�� from the learnt embeddings � , and then computes embedding �� by performing max pooling over �� .
Vector �� is ultimately concatenated to all the learnt embeddings produced by the Encoder.

After integration, regardless of the integration scheme used, ��×� is transformed into �̂
�×�̂

which serves as
the input to the Decoder.

4.4 Decoder

The decoder takes in the integrated embeddings as input and derives the nodes’ state values (0 for normal and 1
otherwise) at the speciied time tick (See Fig. 10). It consists of a fully-connected (FC) layer followed by a Softmax

block (See (16) and (17)). The FC layer projects the �̂-dimensional vectors onto a 2-dimensional plane, and the

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 15

Fig. 10. Decoder Configuration (Input: �̂
�×�̂

; Output: ��×1)

Softmax operator repositions the projection point on the unit circle via exponential normalization. The ultimate
labels are hence determined from the positions of the largest values in the resulting 2-dimensional vectors.

�
(� �)
�×2 ← � � (�̂

�×�̂
) (16)

or its inverse

��×1 ← �� � ���� (�
(� �)
�×2) (17)

5 EVALUATION

The GSIN’s functionality is measured on a server running CentOS Linux system (version 7) dedicated to deep
learning research. All necessary coding are implemented using PyTorch version 1.7.1+cu110.

5.1 Datasets & Graphs

5.1.1 Datasets. The following datasets are utilized for performance evaluation.

1) SWaT[14]: Collected on a six-stage Secure Water Treatment testbed, the SWaT dataset entails the state
readings of 51 ield devices associated with a water treatment process. It is a popular dataset globally
adopted in industrial process related research.

2) WADI: This is a dataset obtained over a three-stage Water Distribution testbed. It incorporates the numeric
reading sequences with respect to 124 devices across all stages. Similar to the SWaT dataset, the WADI set is
also frequently utilized for model measurement designed for analyzing and securing cyber-physical systems.
Technical details of the dataset as well as the testbed are available at https://itrust.sutd.edu.sg/itrust-labs-
home/itrust-labs_wadi/.

3) CISS: The Critical Infrastructure Security Showdown dataset is produced via a series of technology
assessment exercises held by iTrust. It keeps record of the numeric states and operational modes from 28
devices over part of the SWaT testbed during the exercises, and labelled only where attacks occur. For more
details, please visit https://itrust.sutd.edu.sg/ciss/.

4) BATADAL[31]: The BATADAL dataset is a creation of a battle of attack detection algorithms designed for
discovering cyber attacks in water distribution systems. 36 readings from 31 devices are maintained in the
dataset.

5) CHD[29]: Developed by the HCRL, the Car Hacking Dataset is a combination of data snippets recorded in
the normal setting along with 4 attack scenarios (DoS, fuzzy, drive gear spooing, and RPM gauze spooing).
Each scenario is triggered independently and recorded in its own speciied dataset. In this paper, the four
datasets with attacks are concatenated as one for a more general analysis.

The core characteristics of the datasets are summarized in Table 1.

ACM Trans. Intell. Syst. Technol.

16 • L(y)u et al.

Table 1. Dataset Characteristics

Dataset #Controllers #Devices #Dimensions Adpoted Sampling Interval #Samples Anomaly Ratio

SWaT 6 51 35 1s 449,920 12.1402%

CISS 6 28 50 1s 115,883 0.0621%

WADI 5 123 74 1s 172,800 5.7737%

BATADAL 9 31 36 1hr 4,177 5.2430%

CHD N/A 1 9 N/A 16,569,475 14.0712%

5.1.2 Graphs. The GSIN is trained and evaluated on 2 types of topologies as shown in Fig. 11.

(a) 3 Layer Structure (Star-shaped Topology) (b) 2 Layer Structure

Fig. 11. Basic Topologies

The 3-layer structure, also denoted as the star-shaped topology [24] [27], incorporates the CRP node as its
top layer. While in the 2-layer structure where the CRP is not applicable, the top layer comprises the controller
nodes inter-connected with one another. Note that Fig. 11 merely exhibits the layout and connection patterns
of the graph, while the speciic quantity of sensors and actuators attached to each controller is conigured in
accordance to the datasets. The models developed with 2-layered and 3-layered topological structures feature
distinct merits and also sufer from diferent drawbacks.
Models created with a 2-layered graph:

1) Advantages: Comparative to a 3-layered architecture, distances among nodes in distinct stages are relatively
shortened in the 2-layered topology. Thus, it takes fewer message passing moves for some edge node to
learn information from another node located in a distant stage. In the meantime, with the message passing
paths shortened, information loss that occurs during message aggregation has been efectively mitigated,
for which the quality of the resulting node embeddings produced by the Integrator is improved. Therefore,
these embeddings serve as a more solid basis for speciic subsequent tasks such as node-level anomaly
detection.

2) Disadvantages: Although a complete linkage at the controlling layer can be beneicial to the GSIN as
explained previously, the other side of the coin, however, lies in the undesirably incremented complexity in
the structure of the graph. It yields a more convoluted adjacency matrix and consequently consumes extra

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 17

computation resources during the learning process. To tackle this, however, one may consider moderately
truncating part of the layers as a countermeasure, in which case the computation cost can be balanced.

Models created with a 3-layered graph:

1) Advantages: Instead of a full connection among the controllers, the 3-layered graph introduces a media
node (CRP) to link all controllers to each other. With fewer links involved than the 2-layered architecture
as shown in Fig. 11, the adjacency relations are relatively streamlined and the GSIN’s runtime eiciency is
potentially better.

2) Disadvantages: As the number of message passing steps it takes for a node to become aware of all other
nodes is increased by one due to the addition of the CRP node, one more neural layer is required for the
respective GSIN to achieve performance close to that of the model trained with a 2-layered structure. In
this scenario, the quantity of the trainable parameters may rise and the GSIN’s training eiciency is hence
impaired. Therefore, hyperparameter tuning tends to be trickier in order to balance the GSIN’s functionality
and its operational eiciency.

5.2 Metrics

With TP, FP, TN and FN abbreviations with respect to the number of True Positive, False Positive, True Negative
and False Negative samples, our evaluation metrics are listed as follows:

1) Accuracy: Measures a model’s ability to correctly classify samples to the categories they pertain to.
Computed as �������� =

��+��
��+��+��+��

.

2) Precision: Evaluates a model’s detection accuracy over the positive samples. This metric is usually of
signiicant value in ICS anomaly detection, given the convention in industrial processes that a system’s
availability takes priority over any other security paradigm. Computed as ��������� =

��
��+��

.

3) Recall: Assesses a model’s ability to respond to all positive scenarios (i.e. anomalies of all sorts). Computed
as ������ = ��

��+��
.

4) F1 Score: Compound metric incorporating Precision and Recall. Measures a model’s overall detection

efectiveness. Computed as �1 = 2×���������×������
���������+������

.

5) AUROC: The area under the Receiver Operating Characteristics Curve. Evaluates a model’s ability to
diferentiate positive cases from negative ones.

6) AUPRC: The area under the Precision-Recall Curve. Useful metric for the cases in which inding positive
examples in unbalanced data is particularly interesting.

5.3 Stage-wise Integration

To explore the efect of stage-wise integration on the GSIN, diferent pooling ranges (denoted as ��) are applied
and the respective anomaly detection performances (box plots of the F1 scores and AUPRC values) are recorded
in Fig. 12 and Fig. 13. Each box plot is obtained via running the GSIN with a particular parameter settup 20 times
in a row, and that other parameter coniguration details are as follows: input layer with size that matches the
input vectors; hidden layer (one with 128 neurons); output layer with 2 neurons + logSoftmax; ���� activation.
Note that this coniguration also applies to the GSINs in Section 5.4 5.5 and 5.6.

ACM Trans. Intell. Syst. Technol.

18 • L(y)u et al.

(a) SWaT Results (b) WADI Results (c) BATADAL Results

(d) CISS Results (e) CHD Results

Fig. 12. Stage-wise GSIN Performance with 2-Layer Setings

(a) SWaT Results (b) WADI Results (c) BATADAL Results

(d) CISS Results (e) CHD Results

Fig. 13. Stage-wise GSIN Performance with 3-Layer Setings

Our observations stand thus:

• The GSIN’s AUPRC performance rises almost monotonically as the pooling range increases, peaking when
the �� value reaches its maximum with respect to the speciic dataset. No obvious convergence is observed
except for the BATADAL, indicating that trading pooling coverage for other beneits (such as operational
eiciency) without degrading GSIN’s functionality is generally not so viable through stage-wise integration.

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 19

This may attribute to the contextual diversity encoded in the embeddings among nodes across diferent
stages. Speciically, although a node’s global awareness is enhanced through message passing, its local
features still remain dominant, indicating that nodes in the same stage tend to be semantically similar,
while the other way around otherwise. Therefore, an embedding pooled from particular stages may not
capture all principal characteristics in the entire topology, in which case the potential of improving the
GSIN’s detection preformance is undesirably reduced.

• The GSIN’s functionality varies along with the graph architecture. Our results indicate that given identical
pooling conigurations, the model’s test results with 2 structural layers generally surpass their counterpart
with 3. This observation arises from the beneits of the 2-layer structure in message passing, stated as
follows: As shown in Fig. 5.1.2, the stage-exclusive properties tend to be more suiciently mingled in the
2-layer structure during the message passing process as the controller nodes are able to directly exchange
information with each other without using a third-party media (as the CRP in the 3-layer structure), which
potentially mitigates information loss in the aggregation process. In this scenario, the proiles of the nodes in
the 2-layer topology are enriched with more core features across the other stages than in the 3-layer graph,
leading to a boost in the GSIN’s ability to accurately detect anomolous patterns using these integrated
node-level proiles.

5.4 Layer-wise Integration

In this section, we examine the efect of layer integration on the GSIN. Similar to Section 5.3, the integration
algorithm is also run 20 times for each sampling rate (denoted as �), and the box plots of the GSIN’s F1 and
AUPRC values obtained over the controlling and ield layer with respect to the 2-layer and 3-layer structures are
illustrated in Fig. 14 15 16 and 17.

(a) SWaT Results (b) WADI Results (c) BATADAL Results

(d) CISS Results (e) CHD Results

Fig. 14. Controlling Layer Sampling with 2-Layer Setings

ACM Trans. Intell. Syst. Technol.

20 • L(y)u et al.

(a) SWaT Results (b) WADI Results

(c) BATADAL Results (d) CISS Results

(e) CHD Results

Fig. 15. Field Layer Sampling with 2-Layer Setings

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 21

(a) SWaT Results (b) WADI Results (c) BATADAL Results

(d) CISS Results (e) CHD Results

Fig. 16. Controlling Layer Sampling with 3-Layer Setings

ACM Trans. Intell. Syst. Technol.

22 • L(y)u et al.

(a) SWaT Results (b) WADI Results

(c) BATADAL Results (d) CISS Results

(e) CHD Results

Fig. 17. Field Layer Sampling with 3-Layer Setings

With � the number of sampled nodes for integration, it is perceivable that the GSIN’s AUPRC tends to saturate
above a particular � value. For example, the value of AUPRC generally ceases to increase to a higher level as
� reaches 31 or higher in the WADI dataset, and the same applies to the CHD dataset when � exceeds 4, etc.
This leads to our inference that although participation of all nodes may intuitively beneit integration with the
greatest amount of representative features possible, it is probably unnecessary to do so when similar results
can be achieved with fewer nodes taken into consideration, due to semantic overlapping among nodes in close
proximity. In fact, parts of the igures actually show decrement of the GSIN’s detection functionality as the
sampling rate approaches its supremum (e.g. the AUPRC for the CISS dataset in the 3-layer setting, and the F1 for
the CHD dataset in the 2-layer setting, etc.). This sheds light on our conjecture that information overlapping
may trigger semantic redundancy that negatively impacts the message distribution in a node’s embedding, and
consequently deteriorates the GSIN’s anomaly detection accuracy.

Based upon the results shown above, one is able to see the optimal integration option for the GSIN. The model’s
functionality generally saturates at around � = 25, � = 37, � = 25, � = 13, and � = 4 with respect to the SWaT,
WADI, BATADAL, CISS, and CHD datasets with ield layer sampling adopted, implying that the embedding

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 23

Table 2. Mapping of Device Labels

Dataset Label Mapping

SWaT
Controllers: 1-6; Stage 1: 7-10; Stage 2: 11-15; Stage 3: 16-23; Stage 4: 24-28;

Stage 5: 29-39; Stage 6: 40-41

WADI
Controllers: 1-5; Stage 1: 6-20; Stage 2: 21-30; Stage 3: 31-42; Stage 4: 43-72;

Stage 5: 73-79

BATADAL
Controllers: 1-9; Stage 1: 10-15; Stage 2: 16; Stage 3: 17-30; Stage 4: 31;

Stage 5: 32-41; Stage 6: 42; Stage 7: 43; Stage 8: 44; Stage 9: 45

CISS
Controllers: 1-6; Stage 1: 7-11; Stage 2: 12-19; Stage 3: 20-29; Stage 4: 30-36;

Stage 5: 37-53; Stage 6: 54-56

CAN Grouping Nodes: 1-3; Group 1: 4-6; Group 2: 7-9; Group 3: 10-12

created from a uniformly pooled subset of ield layer nodes is semantically rich enough to maximize the GSIN’s
anomaly detection performance.

5.5 Individual Device Influence

To further investigate how each device in the network may impact the GSIN’s functionality via integration,
models conducting individual sampling are created in which only one device is selected for pooling. To quantitize
such individual inluences, a new metric ś the Individual Inluence Score (IIS) is introduced as follows:

� �� (�) =
Ψ
(�) − �

�
(18)

where � is the device label, Ψ (�) the metric score (F1 or AUPRC) of the GSIN that conducts pooling over the
single device labelled �, and with � the number of devices in the graph, Ψ’s mean and standard deviation are
computed as (19) and (20):

� = Ψ =
1

�

�︁

�=1

Ψ
(�) (19)

and

� = (Ψ (�) − �)
2
=

1

�

�︁

�=1

(Ψ (�) − �)
2

(20)

Fig. 18 19 20 21 22 present the histograms of the IISs with respect to all devices for all datasets. The x-axis
values denote the device labels in the graph, and the y-axis values represent the respective IISs. To derive better
implications over the results, the mapping relations of all the devices to their labels are provided in Table 2. Taking
the SWaT dataset as an exempliication, there are 6 controllers labelled from 0 to 5, as well as 6 stages, each of
which associated with a couple of ield devices. Speciically, devices number 6-9 belong to Stage 1; devices number
10-14 are members of Stage 2; devices labelled 15-22 are correlated with Stage 3; devices 23-27 are assigned to
Stage 4; devices 28-38 are incorporated in Stage 5 and devices 39-40 are related to Stage 6.

Here are our observations:

• One can conclude from the igures that there is a noticeable resemblance in the IIS scores obtained from
pooling the ield devices in the same stage. For instance, the IISs computed for the devices from Stage 5 in

ACM Trans. Intell. Syst. Technol.

24 • L(y)u et al.

Fig. 18. Individual Influence Scores (IIS) for SWaT

Fig. 19. Individual Influence Scores (IIS for WADI)

Fig. 20. Individual Influence Scores (IIS) for BATADAL

the WADI dataset are numerically similar to each other. The same can be said to Stage 1 in the BATADAL
dataset, Stage 2 in the CISS dataset, etc.. The reason for this numeric uniformity lies in the topological
role consistency among all nodes in the same stage in terms of how messages are aggregated, and this
consistency leads to similarity in the semantic composition of their vector representations. Therefore, the
embeddings of nodes within a particular stage tend to be numerically similar and hence it is expected their
contributions to the GSIN’s performance are not far from equivalent.

• The inluences of nodes to the GSIN from disparate stages in the same industrial process may difer
tremendously from each other. For example, the IIS discrepancy for the devices in Stage 1 and 3 in the
BATADAL dataset is rather easy to discern, and the diferences between the results obtained from Stage 3
and 5 in the WADI dataset are also fairly apparent. We speculate that this might result from the devices’

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 25

Fig. 21. Individual Influence Scores (IIS) for CISS

Fig. 22. Individual Influence Scores (IIS) for CHD

distinctiveness in their local topological context. As the set of immediate neighbours from which messages
are aggregated difer drastically across stages, embeddings of nodes from diferent stages are typically
unique numerically as they exhibit a node’s distinct local awareness. Therefore, it is not surprising to spot a
dramatic deviation between the nodes’ inluences to the GSIN’s functionality from disparate stages. On the
other hand, it is conjectured that the numeric properties of the reading streams with respect to diferent
ield devices also shapes the overall contribution of a particular node to the GSIN’s performance, though
further research is required to deeply understand the inherent principles.

5.6 Runtime Consumption

In this section, we evaluate the GSIN’s runtime eiciency against its closest couterpart, the GLIN, which features
global pooling instead of sampling. Both models are of the same GNN architecture as described in Section 5.3.
Layer-wise integration is applied to the GSIN with sampling rates of 25, 37, 25, 21, and 4 with respect to SWaT,
WADI, BATADAL, CISS and CHD. The training and test time consumption of the two methods for all datasets
are displayed in Table 3.

The results in Table 3 show that the GSIN is no less than 5.8384% more eicient than the GLIN in training, and
it also renders a desirable improvement in the model’s runtime consumption during test phase in all datasets
apart from the CHD. This indicates that sampling can have a meliorating efect on the model’s runtime cost. As
the set of nodes to be processed during integration is streamlined, it is expected the pooling process becomes less
time consuming to an extent depending on the actual sampling rate conigured in the GSIN. It is suggested that
the minimum sampling rate should be selected at which the GSIN’s functionality and operational eiciency are
appropriately balanced as required in speciic industrial scenarios.

ACM Trans. Intell. Syst. Technol.

26 • L(y)u et al.

Table 3. Runtime Consumption

Dataset Models Training (s) Test (s) Eiciency Gain (%)

SWaT
GLIN 2.3129 17.3887 Train: +57.0943

GSIN 1.4723 11.8294 Test: +46.9956

WADI
GLIN 1.4752 11.3276 Train: +172.6802

GSIN 0.5410 4.9696 Test: +127.9379

BATADAL
GLIN 0.4159 0.6395 Train: +87.9349

GSIN 0.2213 0.3802 Test: +68.2009

CISS
GLIN 0.7258 5.8436 Train: +108.4434

GSIN 0.3482 3.6740 Test: +59.0528

CHD
GLIN 2.4636 16.6507 Train: +5.8384

GSIN 2.3277 18.7411 Test: -11.1541

Table 4. SWaT Dataset Anomaly Detection Baseline Comparison (%)

Methods Accuracy Recall Precision F1 AUROC AUPRC

GSIN (Ours) 80.25 64.37 89.27 74.80 77.87 67.63

TAGCN 76.87 57.20 87.41 69.15 69.97 52.81

GAT 75.69 56.52 75.32 64.58 67.42 51.51

E-GSAGE 78.47 60.53 87.22 71.47 71.74 56.58

GLIN 80.34 64.76 88.19 74.68 75.80 66.06

FT-GCN 76.02 55.11 87.22 67.54 65.35 60.78

kNN 79.44 63.03 83.64 71.89 77.56 64.05

AE 67.80 51.02 51.76 51.39 58.32 30.65

SO-GAAL 72.96 50.05 54.53 52.19 58.57 32.08

MO-GAAL 65.34 54.28 54.63 54.46 53.32 30.34

Replicator-NN 62.20 53.15 53.02 53.08 57.08 31.37

OCSVM 64.67 52.53 52.89 52.71 45.93 27.89

Isolation Forest 63.54 53.72 53.72 53.72 58.39 32.46

LOF 65.85 56.92 56.90 56.91 58.75 33.12

5.7 Baseline Comparison

Finally, we compare the GSIN’s performance against multiple existing baselines ranging from similar GNN
methods to other machine and deep learning approaches, as listed below.

• GSIN: Graph Sample-and-Integrate Network. Proposed method in this article.

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 27

Table 5. WADI Dataset Anomaly Detection Baseline Comparison (%)

Methods Accuracy Recall Precision F1 AUROC AUPRC

GSIN (Ours) 88.28 88.14 85.33 86.71 94.91 89.12

TAGCN 71.90 52.67 78.25 62.96 65.25 45.77

GAT 70.76 50.47 81.56 62.35 68.61 50.37

E-GSAGE 74.30 61.52 69.87 65.43 74.47 57.66

GLIN 86.24 87.18 83.15 85.12 94.50 88.39

FT-GCN 72.19 52.98 75.22 62.17 63.52 46.12

kNN 72.45 56.29 66.76 61.08 67.54 47.48

AE 67.18 52.24 54.22 53.21 56.42 34.48

SO-GAAL 70.52 50.13 63.56 56.05 55.00 34.52

MO-GAAL 70.55 50.18 65.50 56.83 49.83 34.67

Replicator-NN 60.30 51.92 51.95 51.93 55.47 32.67

OCSVM 62.70 53.48 53.70 53.59 51.50 32.22

Isolation Forest 61.28 53.48 53.46 53.47 56.17 33.10

LOF 60.76 53.12 53.15 53.13 55.48 34.28

Implementation details: 1 input layer (size matches preprocessed vectors); 1 hidden layer (128 neurons);
output layer (2 classes); ���� activation; max pooling + ield layer sampling (� equals 25, 37, 25, 21, and 4
with respect to SWaT, WADI, BATADAL, CISS and CHD).

• TAGCN[12]: Systematic approach to perform convolutions on graphs using learnable ilters.
Implementation details: 1 input layer (size matches preprocessed vectors); 3 hidden layer (128 neurons);
output layer (2 classes); number of kernels � = 3; trainable coeicients.

• GAT[33]: Attention-based message aggregation scheme. Features attention computation using vertice
proiles.
Implementation details: 1 input layer (size matches preprocessed vectors); 1 hidden layer (128 neurons);
output layer (2 classes); ���� activation.

• E-GSAGE[23]: Employs edge proile incorporation during message passing.
Implementation details: 1 input layer (size matches preprocessed vectors); 3 hidden layer (128 neurons);
output layer (2 classes); ���� activation; edge proiles (end point mean pooling); full sampling.

• GLIN[24]: Features global-local semantic pooling and integration. Enhances global awareness for accurate
decoding.
Implementation details: 1 input layer (size matches preprocessed vectors); 1 hidden layer (128 neurons);
output layer (2 classes); ���� activation; max pooling + concatenate integration.

• FT-GCN[9]: A novel approach for label-limited IoT network intrusion detection. We attempt to transfer
and evaluate the model in the speciied industrial scenarios.

ACM Trans. Intell. Syst. Technol.

28 • L(y)u et al.

Table 6. BATADAL Dataset Anomaly Detection Baseline Comparison (%)

Methods Accuracy Recall Precision F1 AUROC AUPRC

GSIN (Ours) 91.89 76.92 87.06 81.67 84.60 70.12

TAGCN 86.08 50.31 93.03 65.30 64.76 22.49

GAT 87.34 54.97 91.85 68.78 65.70 32.15

E-GSAGE 87.89 58.32 85.16 69.23 71.19 38.27

GLIN 91.63 75.53 87.11 80.91 83.48 67.57

FT-GCN 85.60 50.00 42.80 46.12 61.43 58.95

kNN 86.21 50.53 84.64 63.28 66.80 25.14

AE 62.27 56.57 53.38 54.93 51.79 15.98

SO-GAAL 86.02 50.12 88.84 64.09 50.12 52.95

MO-GAAL 86.01 50.13 76.80 60.66 50.13 40.94

Replicator-NN 61.41 56.96 53.53 55.19 62.35 18.41

OCSVM 78.88 52.56 53.81 53.18 43.42 19.91

Isolation Forest 77.52 54.27 54.18 54.22 64.16 20.80

LOF 75.60 54.44 54.44 54.44 60.61 22.97

Implementation details: 2 parallel TAGCN frameworks, each of which has 1 input layer (size matches
preprocessed vectors); 3 hidden layer (128 neurons); output layer (2 classes); number of kernels � = 3;
trainable coeicients; fully-connected mapping layer.

• kNN: Classic distance-based classiication method.
Implementation details: �_����ℎ����� is set as the number of nodes in the topology associated with the
particular dataset (42, 80, 57, 46, and 12 with respect to SWaT, WADI, CISS, BATADAL and CHD).

• AE: Classic outlier detection method featuring proile reconstruction.
Implementation details: 1 input layer (size matches preprocessed vectors); 1 encoding layer (32 neurons
for SWaT and WADI, 16 for CISS, 8 for BATADAL and CHD); 1 decoding layer (size matches input layer);
���� activation.

• SO-GAAL[22]: Anomaly detection via outlier sampling. Characterizes informative sample generation and
boundary learning.
Implementation details: 1 generator (3 layers in total, number of neurons in each layer matches preprocessed
vectors); 1 discriminator (composed of 1 input layer, 1 hidden layer of size 128, and 1 output layer of size 2);
���� activation.

• MO-GAAL[22]: Same principle as the SO-GAAL, except using multiple generators to create outliers.
Implementation details: � generators (� = 2; each generator has 3 layers in total, and the number of neurons
in each layer matches preprocessed vectors); 1 discriminator (composed of 1 input layer, 1 hidden layer of
size 128, and 1 output layer of size 2); mini-batch size equals 64/� ; ���� activation.

• Replicator-NN[18]: AE-based outlier detector. Featuring a multi-layer perceptron that detects anomalies
based on reconstruction errors.

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 29

Table 7. CISS Dataset Anomaly Detection Baseline Comparison (%)

Methods Accuracy Recall Precision F1 AUROC AUPRC

GSIN (Ours) 74.94 73.23 73.69 73.46 81.23 84.03

TAGCN 71.19 64.19 83.36 72.53 67.88 69.16

GAT 69.38 64.52 70.10 67.19 66.41 69.44

E-GSAGE 71.76 65.20 78.52 71.25 65.92 68.46

GLIN 73,63 71.21 72.39 71.80 79.30 82.34

FT-GCN 71.97 65.22 84.02 73.44 66.86 68.53

kNN 73.27 68.44 76.17 72.10 75.46 79.66

AE 39.11 40.23 40.39 40.31 43.55 59.26

SO-GAAL 68.69 63.81 69.09 66.35 64.11 66.80

MO-GAAL 60.95 60.21 59.95 60.08 60.39 67.18

Replicator-NN 54.50 56.48 56.43 56.45 64.04 68.03

OCSVM 55.08 57.88 57.77 57.83 49.74 61.87

Isolation Forest 61.44 59.89 59.90 59.90 62.54 67.12

LOF 57.69 57.85 57.38 57.62 56.35 68.16

Implementation details: 1 input layer (size matches preprocessed vectors); 2 encoding layer (size of encoding
layer 1: 32 neurons for SWaT and WADI, 16 for CISS, 8 for BATADAL and CHD; size of encoding layer 2:
half of layer 1’s size); 2 decoding layers (size of decoding layer 1: equivalent to encoding layer 1; size of
decoding layer 2: equals the size of input); �2 = �4 = 1; �3 = 100; � = 4.

• OCSVM: State-of-the-art novelty detection method. Flexible in learning sophisticated nonlinear boundaries.
Implementation details: �� equals the ratio of anomalies for the respective dataset; ������ = ł�� � ”;
����� = ł����”.

• Isolation Forest: Eicient outlier detector using feature splitting. Applicable to large volume data.
Implementation details: ������������� is conigured as the ratio of anomalies with respect to the speciic
dataset; �_���������� = 1000.

• LOF: Detects outlier via local density deviation computation. Assumes that outliers exhibit a noticeably
lower density than their neighbouring data points.
Implementation details: �_����ℎ����� equals the number of nodes in the graph (42, 80, 57, 46, and 12 with
respect to SWaT, WADI, CISS, BATADAL and CHD); ������������� is set as the ratio of anomalies for the
corresponding dataset; ������� = ����; �_ ���� = −1.

The test set results with respect to all datasets are summarized in Table 4 5 6 7 8.
In general, despite the existence of a few exceptions, the GSIN surpasses the baseline methods in almost all

the metrics, such as a marginal F1 gain of 0.12%, 1.59%, 0.76%, 0.02% and 0.22% with respect to the SWaT, WADI,
BATADAL, CISS, and CHD datasets, as well as an improvement of 1.57%, 0.73%, 2.55%, 1.69% and 0.12% in AUPRC.
Based on these results, our observations and analysis are stated as below.

ACM Trans. Intell. Syst. Technol.

30 • L(y)u et al.

Table 8. CHD Dataset Anomaly Detection Baseline Comparison (%)

Methods Accuracy Recall Precision F1 AUROC AUPRC

GSIN (Ours) 99.48 99.13 99.62 99.37 99.78 99.70

TAGCN 76.92 60.51 85.85 70.99 89.26 79.61

GAT 90.06 84.06 91.73 87.73 94.97 90.64

E-GSAGE 99.30 98.84 99.46 99.15 99.68 99.58

GLIN 98.80 98.33 98.76 98.54 99.69 99.54

FT-GCN 75.98 58.72 87.31 70.22 75.64 68.89

kNN 87.06 79.50 88.62 83.82 92.85 88.19

AE 65.34 60.30 59.52 59.91 72.76 52.55

SO-GAAL 58.51 67.26 64.24 65.72 68.41 34.52

MO-GAAL 73.28 50.70 65.47 57.14 69.02 46.27

Replicator-NN 54.15 67.22 68.52 67.87 77.47 56.24

OCSVM 70.27 58.38 61.82 60.05 51.06 40.40

Isolation Forest 73.01 58.18 66.97 62.26 47.59 40.08

LOF 72.93 67.82 67.46 67.64 76.29 53.08

• As diferentiated frommost of the GNN baselines (i.e. TAGCN, GAT, E-GSAGE, FT-GCN), the GSIN enhances
a node’s awareness over the entire picture via encapsulating the graph’s representative features into the
node’s vector representation. In this fashion, the GSIN is able to better exploit the relational properties
among nodes that are topologically distant from each other, and utilize them efectively in deriving more
reliable detection results.

• As compared to the GLIN that conducts pooling over all the nodes in the graph, the GSIN performs
sampling before the integration process. On one hand, the sampling operation streamlines the set of nodes
for subsequent feature pooling, potentially preserving a portion of computational resources consumed in
global pooling, making the algorithm more eicient. On the other hand, as nodes within close proximity
tend to overlap in terms of contextual semantics due to the neighbouring aggregation paradigm employed
in message passing, incorporating all nodes during integration may introduce redundant information in
the resulting global representation. Such redundancy may unbalance the feature composition of the node
embeddings with repetitive info, exerting limitations on their ability to absorb extra distinct information.
By applying sampling, this issue is efectively alleviated as the distances among the nodes are enlarged. In
this case, semantic overlapping is reduced and the pooled features are a more appropriate relection of the
graph’s core properties. Therefore, the quality of the integrated node embeddings is improved, and the
GSIN’s functionality is ameliorated.

• State-of-the-art outlier detection baselines (i.e. kNN, OCSVM, Isolation Forest, LOF) treats every input
sample as an independent data point, and attempt to directly discriminate anomalous samples using the
given features. Such principle, though straightforward to implement, are not very efective when dealing
with ine-grained node-level anomaly detection issues in which data points are typically indiferentiable
numerically. The proposed GSIN manages to mitigate this issue via global feature integration, which makes

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 31

each data point not only an exhibition of some node’s exclusive properties, but also a relection of its
associativity with the rest of the data points. In this manner, the density of the data points are moderately
decreased as external features are taken into account, and as a result, this leads to a rather signiicant boost
in the model’s anomaly detection performance.

• Autoencoder based methods (i.e. AE, Replicator-NN) are designed to encode and reconstruct the input
samples and distinguish outliers based upon their reconstruction errors. These benchmarks may also sufer
from the numeric resemblance issues when it comes to node-level anomaly detection, as reconstruction
error alone may not provide suicient gauges to diferentiate data points that are almost identical to
each other. Such problems can be addressed by the GSIN as stated above. Generative adversarial learning
(i.e. SO-GAAL, MO-GAAL), on the other hand, generates informative noise samples to support anomaly
classiication. However, as the statistical characteristics of the distributions from which noise samples are
obtained may dramatically deviates from the actual anomalous data points, boundary learning may still be
challenging, especially on a ine-grained level where a fairly large portion of the outliers are numerically
close to the noraml samples. However, one may consider utilizing the distribution of the speciic input as
the bases for noise generation, which may navigate the model to learn better boundaries.

6 CONCLUSION

In this paper, we investigate the feasibility of improving a GNN model’s node-level inference functionality, via
integration of the graph’s universal properties. We explore the means to extract the set of nodes that produces the
optimal expression encapsulating the graph’s most representative features. Speciically, we design and develop
the GSIN, a generic framework comprising a preprocessor, an encoder, an integration module, and a decoder. The
GSIN takes in the original data low captured from all devices of interest and outputs the state labels corresponding
to each device at any applicable time tick. It outperforms current baselines with an AUPRC gain of 1.57%, 0.73%,
2.55%, 1.69% and 0.12% with respect to the SWaT, WADI, BATADAL, CISS, and CHD datasets. Moreover, the
sampling function makes the GSIN 5.8384% more eicient in training compared to its counterpart performing
global integration. Our future work involves an in-depth analysis of diferent factors shaping each individual
device’s inluence on the GSIN’s performance. Moreover, from the application’s perspective, we plan on evaluating
the feasibility and reliability of deploying the GSIN in real-time systems running diverse industrial processes.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China (2020YFB2009502), the National Natu-
ral Science Foundation of China (No. 62272129) and the Double First-Class Scientiic Research Funds of HIT
(No. IDGA1010200107). The SWaT, WADI, BATADAL and CISS datasets are provided by iTrust Centre for Re-
search in Cyber Security (https://itrust.sutd.edu.sg/dataset/), and the CHD dataset is developed by the HCRL
(https://ocslab.hksecurity.net/Datasets/).

REFERENCES

[1] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut. 2021. A Hybrid CNN-LSTM Based Approach for Anomaly Detection

Systems in SDNs. In 16th International Conference on Availability, Reliability and Security. 1ś7.

[2] Loai Abedalla, Murad Badarna, Waleed Khalifa, and Malik Yousef. 2019. Kśmeans based one-class svm classiier. In International

Conference on Database and Expert Systems Applications. Springer, 45ś53.

[3] M. AlMedires and M. AlMaiah. 2021. Cybersecurity in Industrial Control System (ICS). In 2021 International Conference on Information

Technology (ICIT).

[4] M. R. Asghar, Q. Hu, and S. Zeadally. 2019. Cybersecurity in industrial control systems: Issues, technologies, and challenges. Computer

Networks 165, 106946 (2019). https://doi.org/10.1016/j.comnet.2019.106946

[5] R. R. R. Barbosa, R. Sadre, and A. Pras. 2012. A irst look into SCADA network traic. In 2012 IEEE Network Operations and Management

Symposium. IEEE, 518ś521.

ACM Trans. Intell. Syst. Technol.

https://doi.org/10.1016/j.comnet.2019.106946

32 • L(y)u et al.

[6] M. Caselli, E. Zambon, and F. Kargl. 2015. Sequence-aware intrusion detection in industrial control systems. In 1st ACM Workshop on

Cyber-Physical System Security. 13ś24.

[7] Lei Chen, Yuan Li, Xingye Deng, Zhaohua Liu, Mingyang Lv, and Hongqiang Zhang. 2022. Dual Auto-Encoder GAN-Based Anomaly

Detection for Industrial Control System. Applied Sciences 12, 10 (2022), 4986.

[8] A. Deng and B. Hooi. 2020. Graph neural network-based anomaly detection in multivariate time series. In AAAI Conference on Artiicial

Intelligence, Vol. 35. 4027ś4035.

[9] Xiaoheng Deng, Jincai Zhu, Xinjun Pei, Lan Zhang, Zhen Ling, and Kaiping Xue. 2022. Flow Topology-based Graph Convolutional

Network for Intrusion Detection in Label-Limited IoT Networks. IEEE Transactions on Network and Service Management (2022).

[10] A. Dey. 2020. Deep IDS: A deep learning approach for Intrusion detection based on IDS 2018. In 2020 2nd International Conference on

Sustainable Technologies for Industry 4.0 (STI). IEEE, 1ś5.

[11] H. S. Dhiman, D. Deb, S. M. Muyeen, and I. Kamwa. 2021. Wind turbine gearbox anomaly detection based on adaptive threshold and

twin support vector machines. IEEE Transactions on Energy Conversion 36(4) (2021), 3462ś3469.

[12] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. 2017. Topology adaptive graph convolutional networks.

arXiv preprint arXiv:1710.10370 (2017).

[13] Daniel Fährmann, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. 2022. Lightweight long short-term memory variational

auto-encoder for multivariate time series anomaly detection in industrial control systems. Sensors 22, 8 (2022), 2886.

[14] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. 2016. A dataset to support research in the design of secure

water treatment systems. In International conference on critical information infrastructures security. Springer, 88ś99.

[15] N. Goldenberg and A. Wool. 2013. Accurate modeling of Modbus/TCP for intrusion detection in SCADA systems. International journal

of critical infrastructure protection 6(2) (2013), 63ś75.

[16] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel. 2014. Through the eye of the PLC: semantic security monitoring for

industrial processes. In 30th Annual Computer Security Applications Conference. 126ś135.

[17] W. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural information processing

systems 30 (2017).

[18] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. 2002. Outlier detection using replicator neural networks. In

Data Warehousing and Knowledge Discovery: 4th International Conference, DaWaK 2002 Aix-en-Provence, France, September 4ś6, 2002

Proceedings 4. Springer, 170ś180.

[19] Z. Hu, Y. Dong, K. Wang, K. W. Chang, and Y. Sun. 2020. Gpt-gnn: Generative pre-training of graph neural networks. In 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. 1857ś1867.

[20] Paweł Karczmarek, Adam Kiersztyn, and Witold Pedrycz. 2020. n-ary isolation forest: An experimental comparative analysis. In

International Conference on Artiicial Intelligence and Soft Computing. Springer, 188ś198.

[21] T. N. Kipf and M. Welling. 2016. Semi-supervised classiication with graph convolutional networks. arXiv preprint arXiv:1609.02907

(2016).

[22] Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng Wang, and Xiangnan He. 2019. Generative adversarial active

learning for unsupervised outlier detection. IEEE Transactions on Knowledge and Data Engineering 32, 8 (2019), 1517ś1528.

[23] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, and Marius Portmann. 2022. E-graphsage: A graph neural network

based intrusion detection system for iot. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE, 1ś9.

[24] S. L(y)u, K. Wang, L. Zhang, and B. Wang. 2022. Global-local integration for GNN-based anomalous device state detection in industrial

control systems. Expert Systems with Applications 209, 118345 (2022).

[25] C. Markman, A. Wool, and A. A. Cardenas. 2017. A new burst-DFA model for SCADA anomaly detection. In 2017 Workshop on

Cyber-Physical Systems Security and PrivaCy. 1ś12.

[26] A. Sankar, X. Zhang, and K. C. C. Chang. 2019. Meta-GNN: Metagraph neural network for semi-supervised learning in attributed

heterogeneous information networks. In 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

137ś144.

[27] L Shuaiyi, Kai Wang, Liren Zhang, and Bailing Wang. 2023. Process-Oriented heterogeneous graph learning in GNN-Based ICS

anomalous pattern recognition. Pattern Recognition 141 (2023), 109661.

[28] J. Sinha and M. Manollas. 2020. Eicient deep CNN-BILSTM model for network intrusion detection. In 2020 3rd International Conference

on Artiicial Intelligence and Pattern Recognition. 223ś231.

[29] HM Song, J Woo, and HK Kim. 2018. Can network Intrusion datasets.

[30] Xiaoling Tao, Yang Peng, Feng Zhao, Peichao Zhao, and Yong Wang. 2018. A parallel algorithm for network traic anomaly detection

based on Isolation Forest. International Journal of Distributed Sensor Networks 14, 11 (2018), 1550147718814471.

[31] Riccardo Taormina, Stefano Galelli, Nils Ole Tippenhauer, Elad Salomons, Avi Ostfeld, Demetrios G. Eliades, Mohsen Aghashahi, Raanju

Sundararajan, Mohsen Pourahmadi, M. Katherine Banks, B. M. Brentan, M. Herrera, Amin Rasekh, Enrique Campbell, I. Montalvo,

G. Lima, J. Izquierdo, Kelsey Haddad, Nikolaos Gatsis, Ahmad Taha, Saravanakumar Lakshmanan Somasundaram, D. Ayala-Cabrera,

Sarin E. Chandy, Bruce Campbell, Pratim Biswas, Cynthia S. Lo, D. Manzi, E. Luvizotto, Jr, Zachary A. Barker, Marcio Giacomoni,

ACM Trans. Intell. Syst. Technol.

GNN-based Advanced Feature Integration for ICS Anomaly Detection • 33

M. Fayzul K. Pasha, M. Ehsan Shaiee, Ahmed A. Abokifa, Mashor Housh, Bijay Kc, and Ziv Ohar. 2018. The Battle Of The Attack

Detection Algorithms: Disclosing Cyber Attacks On Water Distribution Networks. Journal of Water Resources Planning and Management

144, 8 (Aug. 2018), 04018048. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000969

[32] Maurras Ulbricht Togbe, Mariam Barry, Aliou Boly, Yousra Chabchoub, Raja Chiky, Jacob Montiel, and Vinh-Thuy Tran. 2020. Anomaly

detection for data streams based on isolation forest using scikit-multilow. In International Conference on Computational Science and Its

Applications. Springer, 15ś30.

[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903

(2017).

[34] Y. Wang, J. Zhang, S. Guo, H. Yin, C. Li, and H. Chen. 2021. Decoupling representation learning and classiication for gnn-based anomaly

detection. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval. 1239ś1248.

[35] J. Yang, C. Zhou, Y. C. Tian, and S. H. Yang. 2019. A software-deined security approach for securing ield zones in industrial control

systems. IEEE Access 7 (2019), 87002ś87016.

[36] J. Zhang, S. Gan, X. Liu, and P. Zhu. 2016. Intrusion detection in SCADA systems by traic periodicity and telemetry analysis. In 2016

IEEE Symposium on Computers and Communication (ISCC). IEEE, 318ś325.

ACM Trans. Intell. Syst. Technol.

https://doi.org/10.1061/(ASCE)WR.1943-5452.0000969

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Model Design
	4.1 Preprocessor
	4.2 Encoder
	4.3 Integrator
	4.4 Decoder

	5 Evaluation
	5.1 Datasets & Graphs
	5.2 Metrics
	5.3 Stage-wise Integration
	5.4 Layer-wise Integration
	5.5 Individual Device Influence
	5.6 Runtime Consumption
	5.7 Baseline Comparison

	6 Conclusion
	Acknowledgments
	References

